Abstract

Tumor therapy presents significant challenges, and conventional treatments exhibit limited therapeutic effectiveness. Imbalance of calcium homeostasis as a key cause of tumor cell death has been extensively studied in tumor therapy. Calcium overload therapy has garnered significant interest as a new cancer treatment strategy. This study involves the synthesis of a transformable nanosonosensitizer with a shell of a calcium ion nanomodulator. The nanosystem is designed to induce mitochondrial dysfunction by combining the calcium ion nanomodulator, nanosonosensitizer, and chemotherapeutic drug. Under ultrasound-activated conditions, CaCO3 dissolves in the tumor microenvironment, causing the nanosonosensitizer to switch from the "off" to the "on" state of ROS generation, exacerbating mitochondrial calcium overload. A two-dimensional Ti3C2/TiO2 heterostructure generates reactive oxygen species (ROS) under ultrasound and exhibits an efficient sonodynamic effect, enhancing calcium overload. Under ultrasound irradiation, Ti3C2/TiO2@CaCO3/KAE causes multilevel damage to mitochondria by combining the effects of rapid Ca2+ release, inhibiting Ca2+ efflux, enhancing tumor inhibition, and converting a "cold" tumor into a "hot" tumor. Therefore, this study proposes a method to effectively combine mitochondrial Ca2+ homeostasis and sonodynamic therapy (SDT) by the preparing pH-sensitive, double-activated, and multifunctional Ti3C2/TiO2-based nanosystems for cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call