Abstract

IntroductionCurrently, the main treatment for advanced breast cancer is still chemotherapy. Immunological and chemical combination therapy has a coordinated therapeutic effect and achieves some efficacy. However, the immunosuppressive tumor microenvironment is a major cause for the failure of immunotherapy in breast cancer. CpG oligodeoxynucleotides can activate the tumor immune microenvironment to reverse the failure of immunotherapy.MethodsIn this study, we designed an amphiphilic peptide micelle system (Co-LMs), which can targeted delivery of the immune adjuvant CpG and the chemotherapeutic drug doxorubicin to breast cancer tumors simultaneously. The peptide micelle system achieved tumor microenvironment pH and redox-sensitive drug release.Results and DiscussionCo-LMs showed 2.3 times the antitumor efficacy of chemotherapy alone and 5.1 times the antitumor efficacy of immunotherapy alone in triple-negative breast cancer mice. Co-LMs activated cytotoxic CD8+ T lymphocytes and CD4+ T cells in mice to a greater extent than single treatments. We also found that Co-LMs inhibited the metastasis of circulating tumor cells in the bloodstream to some extent. These results indicate that the Co-LMs offer a promising therapeutic strategy against triple-negative breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call