Abstract
The tumor microenvironment (TME) of head and neck squamous cell carcinoma (HNSCC) is comprised of cancer-associated fibroblasts (CAFs), immune cells, and other supporting cells. Genetic changes in the carcinoma cells, such as alterations to TP53, NOTCH1, and specific gene expression profiles, contribute to derangements in cancer and microenvironment cells such as increased ROS, overproduction of cytokines, and epithelial to mesenchymal transition (EMT). CAFs are among the most critical elements of the TME contributing to proliferation, invasion, and metastasis. The adaptive immune response is suppressed in HNSCC through overexpression of cytokines, triggered apoptosis of T cells, and alterations in antigen processing machinery. Overexpression of critical cytokines, such as transforming growth factor-β (TGF-β), contributes to EMT, immune suppression, and evolution of CAFs. Inflammation and hypoxia are driving forces in angiogenesis and altered metabolism. HNSCC utilizes glycolytic and oxidative metabolism to fuel tumorigenesis via coupled mechanisms between cancer cell regions and cells of the TME. Increased understanding of the TME in HNSCC illustrates that the long-held notion of "condemned mucosa" reflects a process that extends beyond the epithelial cells to the entire tissue comprised of each of these elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.