Abstract
Image segmentation and classification in the biomedical imaging field has high worth in cancer diagnosis and grading. The proposed method classifies the images based on a combination of handcrafted features and shape features using bag of visual words (BoW). The multistage segmentation technique to localize the nuclei in histopathology images includes the stain decomposition and histogram equalization to highlight the nucleus region, followed by the nuclei key point extraction using fast radial symmetry transform, normalized graph cut based on the nuclei region estimation, and nuclei boundary estimation using modified gradient. Subsequently, features from localized regions termed as handcrafted features and the shape features using BoW are extracted for classification. The experiments are performed using both the handcrafted features and BoW to take the advantages of both local nuclei features and globally spatial features. The simulation is performed on the Bisque and BreakHis data sets (with corresponding average accuracies of 93.87% and 96.96%, respectively) and confirms better diagnosis performance using the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.