Abstract

IntroductionIn solid tumors, regulatory T cell (Treg) and mast cell perform different roles depending on the microenvironment. Nevertheless, mast cell and Treg-mediated interactions in gastric cancer (GC) are unclear, as are their regulation, function, and clinical significance. ObjectiveThe present study demonstrated the mechanism of tumor-infiltrating mast cells stimulating ICOS+ regulatory T cells via the IL-33/IL-2 axis to promote the growth of gastric cancer. MethodsAnalyses of 98 patients with GC were conducted to examine mast cell counts, ICOS+ Tregs, and the levels of IL-33 or IL-2. Isolated ICOS+ Treg and CD8+ T cell were stimulated, cultured and tested for their functional abilities in vitro and in vivo. ResultsGC patients exhibited a significantly more production of IL-33 in tumors. Mast cell stimulated by tumor-derived IL-33 exhibited a prolonged lifespan through IL-33 mediated inhibition of apoptosis. Moreover, mast cells stimulated by tumor-derived IL-33 secreted IL-2, which induced Treg expansion. These inducible Tregs displayed an activated immunosuppressive phenotype with positive expression for the inducible T cell co-stimulator (ICOS). In vitro, IL-2 from IL to 33-stimulated mast cells induced increased numbers of ICOS+ Tregs with increased immunosuppressive activity against proliferation and effector function of CD8+ T cell. In vivo, ICOS+ Tregs were treated with anti-IL-2 neutralizing antibody followed by co-injection with CD8+ T cells in GC mouse model, which showed an increased CD8+ T cell infiltration and effector molecules production, meanwhile tumor growth and progression were inhibited. Besides, reduction in GC patient survival was associated with tumor-derived ICOS+ Tregs. ConclusionOur results highlight a crosstalk between GC-infiltrating mast cells and ICOS+ Tregs and provide a novel mechanism describing ICOS+ Treg expansion and induction by an IL-33/mast cell/IL-2 signaling axis in GC, and also provide functional evidence that the modulation of this immunosuppressive pathway can attenuate GC-mediated immune tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call