Abstract
Cyclooxygenase-2 (COX-2), a key enzyme of prostanoid biosynthesis, plays an important role in both hereditary and spontaneous colon cancer. Individuals with ulcerative colitis are also at high risk for colorectal cancer. To investigate the role of Cox-2 in colitis-associated colon cancer, we subjected Cox-2 luciferase-knock-in mice and Cox-2-knockout mice to a well-known mouse model of colitis-associated cancer in which animals are treated with a single-azoxymethane (AOM) injection followed by dextran sulfate sodium (DSS) administration. Tumors induced by AOM and DSS expressed significantly higher Cox-2 levels when compared with surrounding areas of colon, as detected both by luciferase reporter gene expression driven from the endogenous Cox-2 promoter and by western blotting of COX-2 protein in Cox-2 luciferase heterozygous knock-in mice. Immunofluorescence revealed that tumor stromal fibroblasts, macrophages and endothelial cells express COX-2 protein. In contrast, little COX-2 expression was observed in myofibroblasts or epithelial cells. Despite a significant elevation of COX-2 expression in AOM/DSS-induced colon tumors in wild-type mice, similar tumors developed in AOM/DSS-treated Cox-2(-/-)- and Cox-1(-/-)-knockout mice. These results indicate that cyclooxygenase-derived prostanoids are not major players in colitis-associated cancer. In contrast, tumor formation induced by multiple injections of AOM (with no DSS-induced colitis) did not occur in Cox-2(-/-)-knockout mice. Our data suggest that the mechanism of colorectal tumor promotion in colitis-associated cancer differs from the mechanism of tumor promotion for hereditary and sporadic colorectal cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.