Abstract

Nanomedicines have shown a promising strategy for cancer therapy because of their higher safety and efficiency relative to small-molecule drugs, while the dense extracellular matrix (ECM) in tumors often acts as a physical barrier to hamper the accumulation and diffusion of nanoparticles, thus compromising the anticancer efficacy. To address this issue, two major strategies including degrading ECM components and inhibiting ECM formation have been adopted to enhance the therapeutic efficacies of nanomedicines. In this review, we summarize the recent progresses of tumor ECM modulating strategies for enhanced antitumor therapy of nanomedicines. Through degrading ECM components or inhibiting ECM formation, the accumulation and diffusion of nanoparticles in tumors can be facilitated, leading to enhanced efficacies of chemotherapy and phototherapy. Moreover, the ECM degradation can improve the infiltration of immune cells into tumor tissues, thus achieving strong immune response to reject tumors. The adoptions of these two ECM modulating strategies to improve the efficacies of chemotherapy, phototherapy, and immunotherapy are discussed in detail. A conclusion, current challenges and outlook are then given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.