Abstract

Tumor progression is an evolutionary process during which cells acquire distinct genetic alterations. Several cancer evolutionary studies reconstruct this evolutionary process by applying bulk DNA sequencing to a tumor sample to infer the presence of genetic alterations using various tumor evolutionary algorithms. Through a comprehensive benchmarking effort of these algorithms, a recent study by Salcedo and colleagues found that algorithmic and experimental choices are the main drivers of the accuracy of tumor evolution reconstruction, shedding new light on interpreting previous studies and suggesting a useful path forward for the research community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.