Abstract

The establishment of tumor escape mutants, which can be driven by innate and/or adaptive immune effector cells, presents a significant obstacle in the development of successful tumor immunotherapies. Our study documents that tumors growing within an immune-privileged site within the eye develop a tumor escape phenotype in the absence of selective T cell pressure. P815 tumor cells that are recovered from progressively growing tumors within the anterior chamber of the eye escape elimination when injected into the flanks of a second group of syngeneic DBA/2 mice that were previously immunized against P815 tumor cells. The escape phenotype of eye-derived P815 tumors was stable and permanent when the tumor cells were cultured in vitro. Eye-derived tumor cells recovered from the anterior chamber of CB-17 SCID mice also escaped elimination when injected into the flanks of immunized mice, demonstrating that selective pressure by tumor Ag-specific T cells did not contribute to the development of the escape phenotype. In vitro studies demonstrated that eye-derived tumor cells were not lysed by specific CTL and were unable to restimulate primed Ag-specific T cells. Immune escape of eye-derived tumor cells was not due to down-regulation of either MHC class I or ICAM-1. Our data demonstrate that the immune-privileged environment within the eye induces a tumor escape phenotype that is not driven by selective T cell pressure. We predict that immune escape within the eye is driven by the unique ocular environment that permanently alters gene expression in eye-derived tumor cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call