Abstract
Sarcomas are rare, mesenchymal tumors, representing about 10–15% of all childhood cancers. GD2 is a suitable target for chimeric antigen receptor (CAR) T-cell therapy due to its overexpression in several solid tumors. In this preclinical study, we investigated the potential use of iCasp9.2A.GD2.CAR-CD28.4–1BBζ (CAR.GD2) T-cells as a treatment option for patients who have GD2-positive sarcomas and we sought to identify factors shaping hostile tumor microenvironment in this setting. GD2 expression was evaluated by flow-cytometry on primary tumor biopsies of pediatric sarcoma patients. GD2 expression in sarcoma cells was also evaluated in response to an enhancer of zeste homolog 2 (EZH2) inhibitor (Tazemetostat). The antitumor activity of CAR.GD2 T-cells was evaluated both in vitro and in vivo preclinical models of orthotopic and/or metastatic soft-tissue and bone sarcomas. GD2 expression was detected in 55% of the primary tumors. Notably, the Osteosarcoma and Alveolar Rhabdomyosarcomas subtypes exhibited the highest GD2 expression levels, while Ewing sarcoma showed the lowest. CAR.GD2 T-cells show a significant tumor control both in vitro and in vivo models of GD2-expressing tumors. Pretreatment with an EZH2 inhibitor (Tazemetostat) upregulating GD2 expression, sensitizes GD2dim sarcoma cells to CAR.GD2 T-cells cytotoxic activity. Moreover, in mouse models of disseminated Rhabdomyosarcomas and orthotopic Osteosarcoma, CAR.GD2 T-cells showed both a vigorous anti-tumor activity and long-term persistence as compared to un-transduced T-cells. The presence of immunosuppressive murine myeloid-derived suppressor (MDSC) cells significantly reduces long-term anti-tumour activity of infused CAR.GD2 T-cells. Tumor-derived G-CSF was found to be one of the key factors driving expansion of immunosuppressive murine and human MDSC, thus indirectly limiting the efficacy of CAR.GD2 T-cells. Our preclinical data strongly suggest that CAR.GD2 T-cells hold promise as a potential therapeutic option for the treatment of patients with GD2-positive sarcomas. Strategies to tackle hostile immunosuppressive MDSC are desirable to optimize CAR.GD2 T-cell activity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.