Abstract

Gene expression profiles have great potential for accurate tumor diagnosis. It is expected to enable us to diagnose tumors precisely and systematically, and also bring the researchers of machine learning two challenges, the curse of dimensionality and the small sample size problems. We propose a manifold learning based dimensional reduction algorithm named orthogonal local discriminant embedding (O-LDE) and apply it to tumor classification. Comparing with the classical local discriminant embedding (LDE), O-LDE aims to obtain an orthogonal linear projection matrix by solving an optimization problem. After being projected into a low-dimensional subspace by O-LDE, the data points of the same class maintain their intrinsic neighbor relations, whereas the neighboring points of the different classes are far from each other. Experimental results on a public tumor dataset validate the effectiveness and feasibility of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.