Abstract

The synthesis of a series of bifunctional Gd(III) complexes 1–3 covalently bound to arylphosphonium cations possessing a varying degree of delocalisation at the phosphonium centre is presented. The influence of the degree of delocalisation was investigated with regards to in vitro cytotoxicity, cellular uptake of Gd, tumor-cell selectivity and intracellular localisation of Gd within human glioblastoma (T98G) and human glial (SVG p12) cells. Cellular uptake and selectivity studies for the Gd(III) complexes indicate that a reduced delocalisation at the phosphonium centre can lead to an enhanced Gd uptake into SVG p12 cells which results in a decrease in the overall tumor cell selectivity. Synchrotron X-ray fluorescence (microbeam XRF) imaging has demonstrated for the first time that uniform uptake of Gd(III) complex 2 within a population of T98G cells increased as a function of increasing Gd incubation times. The Gd maps show dispersed spots of high intensity which are consistent with mitochondrial uptake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call