Abstract

Polyacrylamide surfaces covalently derivatized with quantifiable gradients of glycosides superimposed on a uniform adhesive background of coimmobilized Arg-Gly-Asp-containing adhesion peptide were synthesized. Substrate-directed cell redistribution (haptotaxis) was measured by seeding derivatized surfaces uniformly with B16F10 murine melanoma cells. After 4-32 hr, cells on gradients of N-acetylglucosamine (GlcNAc) redistributed markedly; higher cell densities were found at gel positions having a higher immobilized GlcNAc density. In contrast, cells seeded on otherwise identical gels having a uniform concentration of immobilized GlcNAc, or on gels having gradients of glucose or galactose, did not redistribute. Soluble inhibitors containing nonreducing terminal GlcNAc (but not those with terminal GalNAc or Gal) blocked redistribution on immobilized GlcNAc gradients. Redistribution was not affected by the presence or absence of serum in the medium. An affinity-purified antibody against beta-1,4-galactosyltransferase, a GlcNAc-binding protein reported to be expressed on B16F10 cell surfaces, attenuated GlcNAc-directed redistribution. When cells were seeded on surfaces derivatized with various uniform densities of immobilized GlcNAc coimmobilized with an invariant density of immobilized Arg-Gly-Asp-peptide, neither cell attachment nor proliferation rate were enhanced on the gels having a higher GlcNAc density. These data indicate that the redistribution on immobilized GlcNAc gradients was due to cell motility. Although gels derivatized with Arg-Gly-Asp-peptide alone supported strong B16F10 cell adhesion, surfaces derivatized with uniform high concentrations of GlcNAc did not. We conclude that cell recognition of substratum gradients that support, at best, weak adhesion (GlcNAc) on an otherwise uniform strongly adhesive background (Arg-Gly-Asp-peptide) may be sufficient to direct cell migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.