Abstract

Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies.

Highlights

  • Blood flow in tumors is a highly dynamic process that is commonly observed to fluctuate over time [1]

  • We have previously demonstrated that tumor blood flow markedly decreases during the illumination period for Photofrin photodynamic therapy (PDT) [14]

  • We confirm these results in the present investigation; a representative trace of relative blood flow (rBF) in radiation-induced fibrosacomas (RIF) tumors of C3H mice is plotted in Fig. 1A

Read more

Summary

Introduction

Blood flow in tumors is a highly dynamic process that is commonly observed to fluctuate over time [1]. Fluctuations over timescales on the order of minutes or tens of minutes have been identified in the tumors of many animal models, as well as in human disease [1,2,3,4]. These fluctuations, documented both at the individual and network blood vessel level [5], have been attributed to causes such as vascular intussusception from rapid vessel remodeling, locally-determined hemodynamics, and coordinated vasomotion under upstream control [3]. Outside of the oncology field, a role for mouse strain in cardiovascular function and stress response is well documented [10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call