Abstract
Patients with breast cancer (BCa) frequently have preexisting vitamin D deficiency (low serum 25-hydroxyvitamin D) when their cancer develops. A number of epidemiological studies show an inverse association between BCa risk and vitamin D status in humans, although some studies have failed to find an association. In addition, several studies have reported that BCa patients with vitamin D deficiency have a more aggressive molecular phenotype and worse prognostic indicators. However, it is unknown whether this association is mechanistically causative and, if so, whether it results from systemic or tumor autonomous effects of vitamin D signaling. We found that ablation of vitamin D receptor expression within BCa cells accelerates primary tumor growth and enables the development of metastases, demonstrating a tumor autonomous effect of vitamin D signaling to suppress BCa metastases. We show that vitamin D signaling inhibits the expression of the tumor progression gene Id1, and this pathway is abrogated in vitamin D deficiency in vivo in 2 murine models of BCa. These findings are relevant to humans, because we discovered that the mechanism of VDR regulation of Inhibitor of differentiation 1 (ID1) is conserved in human BCa cells, and there is a negative correlation between serum 25-hydroxyvitamin D levels and the level of ID1 in primary tumors from patients with BCa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.