Abstract

243 Background: Circulating Cell-free Genome Atlas (CCGA; NCT02889978) is a multi-center, case-control, observational study with longitudinal follow-up to develop a cfDNA assay in which classifiers were trained on whole-genome bisulfite sequencing (WGBS) and targeted methylation (TM) sequencing data for detection of multiple cancer types. Previously, we showed that the fraction of ctDNA fragments (TF) was a stronger predictor of cancer detection than clinical stage and an equivalent predictor for survival. Given that CRC tumors can be described via surface area (TSA) and microscopic tumor extent (microinvasion), CRC was used as a model to examine the biophysical determinants of TF. Methods: Detection of multiple cancers with WGBS at 98% and TM at > 99% specificity, and methods for determining TF, were previously reported. A model to predict the presence of detectable cfDNA fragments for CRC adenocarcinomas of stages I, II, and III included TSA and microinvasion beyond the subserosa. Predictors were combined assuming a linear increase of cfDNA shedding with tumor size, with scaling factors depending on microinvasion. Model parameters were determined for 27 participants (7, 11, 9 for stages I, II, III, resp.) with WGBS and applied to 40 participants (12, 15, 13 for I, II, III, resp.) with TM assay and information on tumor size and microinvasion. Results: CRC detection at stages I/II/III was 33/46, 61/73, 57/74% for WGBS/TM. TF predicted detection with AUC = 97.6. The model predicted TF as TSA multiplied by 3.81*10−6 / mm2 for tumors that invaded beyond the subserosa (p < 0.001). This was 4.4x higher than estimates for tumors below the subserosa. The model trained on the WGBS assay predicted CRC detection in the TM assay with an AUC of 0.844. Conclusions: This model used TSA (number of tumor cells) and microinvasion (bloodstream access) to predict the fraction of CRC ctDNA fragments in blood without needing to account for stage. Tumors not penetrating the subserosa had low ctDNA shedding that likely limited detection. These findings may generalize to other cancer types, providing principles to predict ctDNA shedding and thus cancer detectability based on microinvasion and surface area. Clinical trial information: NCT02889978.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.