Abstract

Recently, we reported that UVB-activated indole-3-acetic acid (IAA) induces the apoptosis of G361 human melanoma cells. In the present study, we used IAA and visible light combinations to treat B16F10 melanoma-implanted nude mice using an experimental intense pulsed light (IPL) therapy model. We first investigated whether activated IAA by horseradish peroxidase (HRP) or UVB causes apoptosis of B16F10 melanoma cells. IAA/HRP or IAA/UVB combination lead to apoptosis of B16F10 cells, as reported in other cell lines. Interestingly, IAA alone was not cytotoxic. These findings suggested the potential use of IAA in the treatment of melanoma. For the future clinical use, we also tested whether visible light has the same effects like UVB and found that visible light also activates IAA to produce free radicals and that IAA/visible light decreased cell viability significantly. Based on these results, IAA/IPL combination was tried whether it can induce apoptosis in vivo status. TUNEL staining showed that IAA/IPL treatment induced apoptosis of tumor cells. In addition, the expressions of p53, Fas, and PARP were upregulated in the IAA/IPL-treated group than in untreated control, demonstrating that IAA/IPL treatment caused apoptosis in melanoma-implanted nude mice. In conclusion, we showed that IAA/IPL induces melanoma regression in B16F10 melanoma-implanted nude mice. These results suggest the potential use of IAA/IPL in the treatment of malignant melanoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.