Abstract

The rational design of tumor microenvironment (TME)- multifunctional stimuli-responsive nanocomposites is appealing for effective cancer treatment. However, multidrug resistance remains an obstacle to construct responsive oncotherapy. Herein, a novel MoS2/PDA-TPP nanocomposite loaded with chemotherapy drug of doxorubicin (DOX) is designed for TME dual-response and synergistically enhanced anti-tumor therapy based on the tumor-specific mitochondria accumulation ability and photothermal (PTT) therapy. In detail, the designed MoS2/PDA-TPP nanoplatform can act as a pH-responsive dissociation to endow fast release of DOX under an acidic TME and simultaneously improve the efficiency of PTT. Moreover, the mechanism shows that MoS2/PDA-TPP trigger mitochondrial-dependent apoptosis by producing reactive oxygen species (ROS) and reducing mitochondrial membrane potential (MMP). Most importantly, during PTT procedure, hyperthermia up to 50 °C can effectively induce tumor cell death without causing severe inflammation to adjacent tissues. Tumor targeting double stimulation response of nanocomposites is a novel idea to overcome drug resistance, which will provide a more effective strategy for solving practical problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.