Abstract

PurposeBolus injection of fluid into subcutaneous tissue results in accumulation of fluid at the injection site. The fluid does not form a pool. Rather, the injection pressure forces the interstitial matrix to expand to accommodate the excess fluid in its volume, and the fluid becomes bound similar to that in a hydrogel. We seek to understand the properties and dynamics of externally tumesced (swollen) subcutaneous tissue as a first step in assessing whether tumescent antibiotic injections into wounds may provide a novel method of treatment.MethodsSubcutaneous injections of saline are performed in live and dead pigs and the physical properties (volume, expansion ratio, residence time, apparent diffusion constant) of the resulting fluid deposits are observed with diffusion-weighted magnetic resonance imaging, computed tomography, and 3D scanning.ResultsSubcutaneous tissue can expand to a few times its initial volume to accommodate the injected fluid, which is dispersed thoroughly throughout the tumescent volume. The fluid spreads to peripheral unexpanded regions over the course of a few minutes, after which it remains in place for several hours. Eventually the circulation absorbs the excess fluid and the tissue returns to its original state.ConclusionsGiven the evidence for dense fluid dispersal and several-hour residence time, a procedure is proposed whereby tumescent antibiotic injections are used to treat drug-resistant skin infections and chronic wounds that extend into the subcutaneous tissue. The procedure has the potential to effectively treat otherwise untreatable wounds by keeping drug concentrations above minimum inhibitory levels for extended lengths of time.

Highlights

  • In this research article, we describe physics experiments on the in-vivo hydraulic permeability of subcutaneous pig tissue that has been tumesced by an external injection

  • Given the evidence for dense fluid dispersal and several-hour residence time, a procedure is proposed whereby tumescent antibiotic injections are used to treat drug-resistant skin infections and chronic wounds that extend into the subcutaneous tissue

  • Our goal is to provide data that helps answer the question: can skin infections and chronic wounds be treated with targeted antibiotic injections? If concentrated antibiotic is infused into the tissue directly underneath an infected wound, will it cure the infection? The chief advantage of local treatment is that drugs can be delivered directly to the affected regions at higher concentration with reduced risk of systemic toxicity, making them attractive for treating antibiotic-resistant infections [1]

Read more

Summary

Introduction

We describe physics experiments on the in-vivo hydraulic permeability of subcutaneous pig tissue that has been tumesced (swelled) by an external injection. Our goal is to provide data that helps answer the question: can skin infections and chronic wounds be treated with targeted antibiotic injections? If concentrated antibiotic is infused into the tissue directly underneath an infected wound, will it cure the infection? The chief advantage of local treatment is that drugs can be delivered directly to the affected regions at higher concentration with reduced risk of systemic toxicity, making them attractive for treating antibiotic-resistant infections [1]. We demonstrate below that tumescent injections into healthy subcutaneous tissue go beyond a surface Page 2 of 11. Worrisome is the risk of spreading the infection as the fluid disperses. Will the risk of spreading the injection be reduced if the fluid is a concentrated antibiotic? We demonstrate below that fluid remains in the tumesced tissue near the injection site for many hours

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.