Abstract

We prove a generalization of Tukia's ('85) isomorphism theorem which states that isomorphisms between geometrically finite groups extend equivariantly to the boundary. Tukia worked in the setting of real hyperbolic spaces of finite dimension, and his theorem cannot be generalized as stated to the setting of CAT($-1$) spaces. We exhibit examples of type-preserving isomorphisms of geometrically finite subgroups of finite-dimensional rank one symmetric spaces of noncompact type (ROSSONCTs) whose boundary extensions are not quasisymmetric. A sufficient condition for a type-preserving isomorphism to extend to a quasisymmetric equivariant homeomorphism between limit sets is that one of the groups in question is a lattice, and that the underlying base fields are the same, or if they are not the same then the base field of the space on which the lattice acts has the larger dimension. This in turn leads to a generalization of a rigidity theorem of Xie ('08) to the setting of finite-dimensional ROSSONCTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.