Abstract

With the gradual discovery of functional domains in natural proteins, several biologically inspired peptides have been designed for use as biomaterials for hard tissue regeneration and repair. In this study, we designed a tuftelin-derived peptide (TDP) and tested its effects on hydroxyapatite crystallization and remineralization of initial enamel carious lesions in vitro. Using circular dichroism spectroscopy, we found that TDP contained 36.1% β-sheets and β-turns, which could be influenced by calcium ions. We verified the ability of TDP to crystallize hydroxyapatite using transmission electron microscopy and its ability to bind to the enamel surface and hydroxyapatite using confocal laser scanning microscopy and Langmuir adsorption isotherms (K = 881.56, N = 1.41 × 10-5 ). Artificial enamel lesions were generated on human enamel blocks and subjected to a 12-day pH cycling model and were treated with 25 μM TDP, 1 g/L sodium fluoride (NaF), or deionized water. We analyzed the results of remineralization by surface microhardness testing, polarized light microscopy, and transverse microradiography. The TDP group showed significantly higher surface microhardness recovery (49.21 ± 1.66%), shallower lesions (34.89 ± 4.05 μm), and less mineral loss (871.33 ± 81.49 vol%·μm) after pH cycling than the deionized water group (p < .05). There were no significant differences between the TDP and NaF groups. Our experiment indicated that TDP could regulate hydroxyapatite crystallization and promote remineralization of enamel caries in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.