Abstract
The optical absorption spectrum of the solvated electron (es−) in liquid hexane-1,2,6-triol has been measured by nanosecond pulse radiolysis at different temperatures (10–40 °C) to investigate the influence of high solvent viscosity values on the spectral and kinetic properties of es−. The wavelength at the absorption maximum, λmax, is equal to 560 nm, and its variation with temperature, if it exists in the considered zone, is less than the experimental error. At 20 °C and 150 ns, the value of the product [Formula: see text] of the yield of es− and the molar extinction coefficient at λmax is 2.55 × 104 molecule/(M cm 100 eV). In the context of this work, we have compared results obtained with both a linear accelerator and a Febetron, a comparison that has allowed us to evaluate the influence of variations of the dose per pulse and to extend measurements to short times. In the case of experiments performed with the linear accelerator, es− is found to decay at all wavelengths by a first-order reaction (or by a pseudo-first-order reaction) with an activation energy of ~45 kJ mol−1. By contrast, kinetic curves obtained with the Febetron seem to show a competition in which a second-order law is followed at short times. The fact that the shape of the spectra seems to vary as a function of the dose per pulse indicates the possible intervention of another species whose formation is favored by the use of high radiation doses. In other respects, the kinetics of electron solvation does not seem to be controlled by the viscosity of the solvent in our experimental conditions. Keywords: liquid hexane-1,2,6-triol, pulse radiolysis, linear accelerator and Febetron, solvated electron, optical absorption spectrum, kinetic properties, solvent viscosity, dose and temperature effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.