Abstract

The evaluation of Fock exchange is often the computationally most expensive part of hybrid functional density functional theory calculations in a systematically improvable, complete basis. In this work, we employ a Tucker tensor based approach that substantially accelerates the evaluation of the action of Fock exchange by transforming three-dimensional convolutional integrals into a tensor product of one-dimensional convolution integrals. Our numerical implementation uses a parallelization strategy that balances the memory and communication bottlenecks, alongside overlapping compute and communication operations to enhance computational efficiency and parallel scalability. The accuracy and computational efficiency are demonstrated on various systems, including Pt clusters of various sizes and a TiO2 cluster with 3684 electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.