Abstract

The eukaryotic cell cycle relies heavily on the mechanical forces vested by the dynamic rearrangement of the microtubule (MT) network. Tubulin Polymerization promoting Protein 1 (TPPP1) alters MT dynamics by driving MT polymerization as well as stabilization, via increasing MT acetylation. It increases MT rigidity, which results in reduced cell proliferation through downregulation of G1/S-phase and mitosis to G1-phase cell cycle transitioning. In this communication, we provide further evidence that TPPP1 may be an important regulator of genomic homeostasis. Our preliminary data show that long-term TPPP1 overexpression reduces cell viability via induction of apoptotic cell death pathways. Moreover, induction of DNA-damage results in increased TPPP1 expression, which is inhibited in the absence of expression of the tumor suppressor p53.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.