Abstract

MICROTUBULES are present in all eukaryotic cells and have been found to have a variety of structural and dynamic roles in cell shape, division, motility, transport and secretion1. In nervous tissue neurite outgrowth and axoplasmic transport are also thought to depend on microtubule integrity2. The micro-tubule subunit protein, tubulin, is a heterodimer composed of two polypeptides α and β (refs 3,4). The α and β subunits show microheterogeneity and both have been resolved into two or three components5–8. The question therefore arises as to whether changes occur in the relative proportions of the multiple forms of tubulin upon assumption of different roles within the nerve cell. We show here that cytoplasmic rat brain tubulin, as resolved by isoelectric focusing, is highly heterogeneous. Moreover, tubulin microheterogeneity seems to be developmentally determined, increasing from seven to nine distinct components during early postnatal rat brain maturation. However, extensive tubulin microheterogeneity is prominent in the brain, as tubulin from other organs is less heterogeneous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.