Abstract

Wastewater treatment processes energy and emissions issues led researchers to investigate more sustainable alternative technologies, aimed at achieving effective contaminants removal with simultaneous resources recovery (i.e., energy). The combination of microbial fuel cell (MFC) technology with microalgal-based processes in a photo-MFC (PhMFC) could potentially reduce GHGs impact of wastewater treatment, capturing anodically produced CO2 and photosynthetically convert it into oxygen, with a bioelectrochemical, cathodic polishing step. Two tubular PhMFCs were operated with synthetic wastewater under different conditions. Organic matter and nutrients removals and electricity production were monitored under each tested condition. Energy losses and design issues were also analyzed. The two PhMFCs globally proved to be effective in COD (up to 94%), total nitrogen (55%) and total phosphorus (60%) removal, with simultaneous bioelectricity production (up to 5.5 ‧ 10−4 kWh m−3). The presence of microalgae also opens the possibility of recovery opportunities connected to the post-processing of the cathodic effluent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.