Abstract

We have previously immortalized a mouse submandibular gland (SMG) ductal epithelial cell line, SIMS, from pubertal male mice transgenic for the SV40 large T antigen under the control of the adenovirus 5 E1A promoter. Here we demonstrate the role of the extracellular environment in directing not only the morphogenetic behavior of the cells, but also their functional differentiation in terms of renin expression and secretion. First, we measured renin activity of polarized SIMS cells. Low levels of renin are secreted from both the apical and the basolateral domains; the mechanism appears to be direct as no renin was found to be transcytosed across the cell. Second, we studied homotypic and heterotypic mesenchymal cell interactions with SIMS cells. We found that epithelial–mesenchymal coculture in collagen I gels results in branching tubular morphogenesis of SIMS cells and that significant amounts of renin are secreted, probably into the lumen, as the precursor form, prorenin. Third, we investigated the effects of the basement membrane on SIMS cell morphology and function and found that this structure alone is sufficient to allow expression and secretion of both prorenin and active renin. Finally, we established that SIMS cells can express androgen-regulated genes in a transient transfection assay. In addition, in Matrigel cultures androgen receptor expression appears to be induced, suggesting that the SIMS cell line will be useful for further studies on the molecular basis of the observed high-level expression of SMG-specific genes in male mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.