Abstract

Using the analytical formulas derived in Part I for predicting the magnetic field distribution, thrust force, and electromotive force of a three-phase tubular modular permanent-magnet machine equipped with quasi-Halbach magnetized magnets, this paper analyzes the armature reaction field, and addresses issues that are pertinent to the design optimization of the machine. It shows that optimal values of the ratio of the axial length of the radially magnetized magnets to the pole pitch exist for both maximum force capability and minimum force ripple. The utility and accuracy of the analytical predictions and design optimization technique are demonstrated on a 9-slot/10-pole machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.