Abstract

A network of tubular lysosomes extends through the cytoplasm of J774.2 macrophages and phorbol ester-treated mouse peritoneal macrophages. The presence of this network is dependent upon the integrity of cytoplasmic microtubules and correlates with high cellular rates of accumulation of Lucifer Yellow (LY), a marker of fluid phase pinocytosis. We tested the hypothesis that the efficiency of LY transfer between the pinosomal and lysosomal compartments is increased in the presence of tubular lysosomes by asking how conditions that deplete the tubular lysosome network affect pinocytic accumulation of LY. Tubular lysosomes were disassembled in cells treated with microtubule-depolymerizing drugs or in cells that had phagocytosed latex beads. In unstimulated peritoneal macrophages, which normally contain few tubular lysosomes and which exhibit relatively inefficient transfer of pinocytosed LY to lysosomes, such treatments had little effect on pinocytosis. However, in J774 macrophages and phorbol ester-stimulated peritoneal macrophages, these treatments markedly reduced the efficiency of pinocytic accumulation of LY. We conclude that a basal level of solute accumulation via pinocytosis proceeds independently of the tubular lysosomes, and that an extended tubular lysosomal network contributes to the elevated rates of solute accumulation that accompany macrophage stimulation. Moreover, we suggest that the transformed mouse macrophage cell line J774 exhibits this stimulated pinocytosis constitutively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.