Abstract
The role of recommendation algorithms in online user confinement is at the heart of a fast-growing literature. Recent empirical studies generally suggest that filter bubbles may principally be observed in the case of explicit recommendation (based on user-declared preferences) rather than implicit recommendation (based on user activity). We focus on YouTube which has become a major online content provider but where confinement has until now been little-studied in a systematic manner. We aim to contribute to the above literature by showing whether recommendation on YouTube exhibits phenomena typical of filter bubbles, tending to lower the diversity of consumed content. Starting from a diverse number of seed videos, we first describe the properties of the sets of suggested videos in order to design a sound exploration protocol able to capture latent recommendation graphs recursively induced by these suggestions. These graphs form the background of potential user navigations along non-personalized recommendations. From there, be it in topological, topical or temporal terms, we show that the landscape of what we call mean-field YouTube recommendations is often prone to confinement dynamics. Moreover, the most confined recommendation graphs i.e., potential bubbles, seem to be organized around sets of videos that garner the highest audience and thus plausibly viewing time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.