Abstract

Weakly electric fish use tuberous electroreceptor organs to detect their own electric fields. We investigated the role of innervation upon regeneration and differentiation of tuberous electroreceptor organs. The left, infraorbital, anterior lateral line nerve of brown ghosts (Apteronotus leptorhynchus) was sectioned, and the proximal stump was dipped in ricin to prevent regrowth. Immediately after denervation, a piece of cheek skin (approximately 0.5 cm2) was removed bilaterally to induce skin regeneration. After survival periods of 3, 4, or 5 weeks, regenerated skin from the left (denervated) and the right (reinnervated) sides was removed and processed for immunocytochemistry or electron microscopy. Tuberous electroreceptor organs were present in regenerated reinnervated, as well as regenerated denervated skin patches at all survival times. With increased time after skin removal, the number of fully differentiated organs increased in the reinnervated regenerated skin while the number of organs with degenerating receptor cells or entirely devoid of receptor cells increased in the denervated regenerated skin. These results suggest that innervation is not essential for tuberous electroreceptor organ development, but that it is necessary for complete sensory cell differentiation and long-term survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.