Abstract

For centuries, tuberculosis, which is a chronic infection caused by the bacillus Mycobacterium tuberculosis has remained a global health problem. The global burden of tuberculosis has increased, particularly in the Southern African region, mainly due to HIV, and inadequate health systems which has in turn given rise to emergent drug resistant tuberculosis (TB) strains. Bovine tuberculosis (BTB) has also emerged as a significant disease with the tendency for inter-species spread. The extent of interspecies BTB transmission both in urban and rural communities has not been adequately assessed. The phenomenon is of particular importance in rural communities where people share habitats with livestock and wildlife (particularly in areas near national parks and game reserves). Aerosol and oral intake are the major routes of transmission from diseased to healthy individuals, with health care workers often contracting infection nosocomially. Although TB control has increasingly been achieved in high-income countries, the disease, like other poverty-related infections, has continued to be a disaster in countries with low income economies. Transmission of infections occurs not only amongst humans but also between animals and humans (and occasionally vice versa) necessitating assessment of the extent of transmission at their interface. This review explores tuberculosis as a disease of humans which can cross-transmit between humans, livestock and wildlife. The review also addresses issues underlying the use of molecular biology, genetic sequencing and bioinformatics as t tools to understand the extent of inter-species cross-transmission of TB in a 'One Health' context.

Highlights

  • Humans and animals have had close interactions as long as we have historical knowledge of man

  • The need for a systematic global effort to monitor for emerging human is important since most major human infectious diseases are thought to have animal origins (Wolfe, Dunavan & Diamond 2007), examples being helminths, tuberculosis (TB), brucellosis, foot-andmouth disease, leptospirosis, anthrax and Rift Valley fever (RVF)

  • For example, tuberculin skin test (TST) and assays based on gamma interferon response may indicate exposure, but neither indicates disease nor an indication of whether infection is from Mycobacterium tuberculosis, M. bovis, or possibly other mycobacteria, those of the M. tuberculosis complex

Read more

Summary

Introduction

Humans and animals have had close interactions as long as we have historical knowledge of man. There is ample evidence that such lack of control and close contact of the two species contributes to TB transmission, mostly Mycobacterium bovis from cattle to humans.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call