Abstract
The manual observation of sputum smears by fluorescence microscopy for the diagnosis and treatment monitoring of patients with tuberculosis (TB) is a laborious and subjective task. In this work, we introduce an automatic pipeline which employs a novel deep learning-based approach to rapidly detect Mycobacterium tuberculosis (Mtb) organisms in sputum samples and thus quantify the burden of the disease. Fluorescence microscopy images are used as input in a series of networks, which ultimately produces a final count of present bacteria more quickly and consistently than manual analysis by healthcare workers. The pipeline consists of four stages: annotation by cycle-consistent generative adversarial networks (GANs), extraction of salient image patches, classification of the extracted patches, and finally, regression to yield the final bacteria count. We empirically evaluate the individual stages of the pipeline as well as perform a unified evaluation on previously unseen data that were given ground-truth labels by an experienced microscopist. We show that with no human intervention, the pipeline can provide the bacterial count for a sample of images with an error of less than 5%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.