Abstract
The reorganization of epithelial sheets into tubes is a fundamental process in the formation of many organs, such as the lungs, kidneys, gut, and neural tube. This process involves the patterning of distinct cell types and the coordination of those cells during the shape changes and rearrangements that produce the tube. A better understanding of the cellular and genetic mechanisms that regulate tube formation is necessary for tissue engineers to develop functional organs in vitro. The Drosophila egg chamber has emerged as an outstanding model for studying tubulogenesis. Synthesis of the dorsal respiratory appendages by the follicular epithelium resembles primary neurulation in vertebrates. This review summarizes work on the patterning and morphogenesis of the dorsal-appendage tubes and highlights key areas where mathematical modeling could contribute to our understanding of these processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.