Abstract

Familial amyloidotic polyneuropathy (FAP) is caused by a mutation in the transthyretin (TTR) gene. In addition, deposition of wild-type TTR can cause senile systemic amyloidosis (SSA). To date, we have produced several transgenic mouse models for FAP and SSA by introducing TTR genes with different promoters or mutations. However, mouse TTR can associate with human TTR to produce hybrid tetramers in transgenic mice. Thus, these transgenic mice cannot be used to test the efficacy of a new therapy. In this study, we attempted to construct an optimized mouse model to verify a new therapy. The TTR gene consists of 4 exons and 3 introns. We prepared two gRNAs, one for the exon 1 and the other for exon 4, and a single donor vector carrying the whole TTR gene in which mouse exons were replaced with human exons. Using these vectors, we produced a TTR exon-humanized mouse with human exons and mouse introns using genome editing technology. These TTR exon-humanized mice showed normal TTR expression patterns in terms of serum TTR level and spatial specificity. These TTR exon-humanized mice will be useful for devising new treatment methods for FAP, including gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.