Abstract

Semantic change detection (SCD) holds a critical place in remote sensing image interpretation, as it aims to locate changing regions and identify their associated land cover classes. Presently, post-classification techniques stand as the predominant strategy for SCD due to their simplicity and efficacy. However, these methods often overlook the intricate relationships between alterations in land cover. In this paper, we argue that comprehending the interplay of changes within land cover maps holds the key to enhancing SCD’s performance. With this insight, a Temporal-Transform Module (TTM) is designed to capture change relationships across temporal dimensions. TTM selectively aggregates features across all temporal images, enhancing the unique features of each temporal image at distinct pixels. Moreover, we build a Temporal-Transform Network (TTNet) for SCD, comprising two semantic segmentation branches and a binary change detection branch. TTM is embedded into the decoder of each semantic segmentation branch, thus enabling TTNet to obtain better land cover classification results. Experimental results on the SECOND dataset show that TTNet achieves enhanced performance when compared to other benchmark methods in the SCD task. In particular, TTNet elevates mIoU accuracy by a minimum of 1.5% in the SCD task and 3.1% in the semantic segmentation task.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call