Abstract

We perform a detailed study of top-quark partner production in the $t\overline{t}$ plus large missing energy final state at the LHC, presenting results for both scalar and fermionic top-quark partners in the semileptonic and dileptonic decay modes of the top quarks. We compare the results of several simulation tools: leading order matrix elements, next-to-leading order (NLO) matrix elements, leading order plus parton shower simulations, and merged samples that contain the signal process with an additional hard jet radiated. We find that predictions from leading order plus parton shower simulations can significantly deviate from NLO QCD or LO merged samples and do not correctly model the kinematics of the $t\overline{t}+{E}_{T,\mathrm{miss}}$ signature. They are therefore not a good framework for modeling this new physics signature. On the other hand, the acceptances obtained with a merged sample of the leading-order process together with the radiation of an additional hard jet are in agreement with the NLO predictions. We also demonstrate that the scale variation of the inclusive cross section, plus that of the acceptance, does not accurately reflect the uncertainty of the cross section after cuts, which is typically larger. We show the importance of including higher-order QCD corrections when using kinematic distributions to determine the spin of the top-quark partner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.