Abstract
In this paper we use the real differential geometric definition of a metric (a unimodular oriented metric) tt*-bundle of Cortes and the author (Topological-anti-topological fusion equations, pluriharmonic maps and special Kahler manifolds) to define a map Φ from the space of metric (unimodular oriented metric) tt*-bundles of rank r over a complex manifold M to the space of pluriharmonic maps from M to {GL}(r)/O(p,q) (respectively {SL}(r)/SO(p,q)), where (p,q) is the signature of the metric. In the sequel the image of the map Φ is characterized. It follows, that in signature (r,0) the image of Φ is the whole space of pluriharmonic maps. This generalizes a result of Dubrovin (Comm. Math. Phys. 152 (1992; S539–S564).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.