Abstract

In this paper, we study the propagation and run-up of long tsunami-like waves in the 300m long Large Wave Flume (GWK), Hannover, Germany and analyze the feasibility of experiments on tsunami run-up in large facilities. This paper is the continuation of our previous paper (Schimmels et al., 2015, companion paper). The propagation of long period waves over large distances for different shapes is studied experimentally and numerically. Fully nonlinear potential flow theory has been used to model these cases numerically along with Korteweg–de Vries simulations. The theoretical explanation of the observed effects has been discussed. The run-up characteristics of the studied waves with respect to their shape and beach slope were also investigated. Further, a downscaled real tsunami time series is also reproduced experimentally and studied with regard to its possible run-up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.