Abstract
Abstract This paper reports the occurrence of Tsumoite (a bismuth telluride) in the Heti Cu-Ni-PGM prospect, Gondpipri mafic-ultramafic complex, Central India. The Gondpipri complex consists of several tectonically dismembered gabbronorite-gabbro-anorthositic gabbro — olivine gabbro -websterite disposed in ∼10 km long tonalite-trondhjemitegranodiorite (TTG) and charnockite-enderbite suite of rocks. The mineralization occurs in the sulphide zone hosted by gabbro variants. The host rocks have been deformed and metamorphosed to granulite grade and subjected to various degrees of hydrothermal alteration. The mineralization comprises chalcopyrite, pentlandite, pyrrhotite, cubanite, millerite, and pyrite. In addition to these, occur (1) tsumoite (2) PGM in the form of moncheite, merenskyite, Pd-mellonite, and Pt-Pd-Te-Bi-Fe-S alloy. The present study indicates that the mineralization occurs in two stages related to: (i) magmatic and (ii) hydrothermal remobilization and transport of Cu-rich sulphides, tsumoite and PGM, and their re-deposition in hydrosilicate alteration zones. It is possible that the mineralization at Heti formed at different stages of bismuth activity under variable fS2, T, and fTe2 conditions due to change in total concentration of Te and S and /or cooling. Since the role of S is limited, Te and cooling are important factor influencing mineralogy and composition of tsumoite and associated mineralization. Mineralization occurs in two different modes of occurrences. The early mineralisation occur as blebs, specks and dissemination of sulphides, viz. pyrrhotite, chalcopyrite, pentlandite and minor pyrite ± PGM, whereas later mineralisation occur as stringers, minor veins of sulphides viz. pyrite, millerite, cubanite, sijenite, tsumoite and ± PGM. Mineral assemblages and textural relationships at Heti has indicated precipitation of tsumoite and associated PGM along fractures and secondary silicates, which confirms their hydrothermal origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.