Abstract

A new bacterial strain, E105, has been introduced as a biocatalyst for the enantioselective hydrolysis of ethyl (R,S)-2-(2-oxopyrrolidin-1-yl) butyrate, (R,S)-1, to (S)-2-(2-oxopyrrolidin-1-yl) butyric acid, (S)-2. This strain was isolated from 60 soil samples using (R,S)-1 as the sole carbon source. The isolate was identified as Tsukamurella tyrosinosolvens E105, based on its morphological characteristics, physiological tests, and 16S rDNA sequence analysis. The process of cell growth and hydrolase production for this strain was then investigated. The hydrolase activity reached its maximum after cultivation at 200rpm and 30°C for 36h. Furthermore, the performance of the enantioselective hydrolysis of (R,S)-1 was studied. The optimal reaction temperature, initial pH, substrate concentration, and concentration of suspended cells were 30°C, 6.8, 10 and 30g/l (DCW), respectively. Under these conditions, a high conversion (>45%) of the product (S)-2 with an excellent enantiomeric excess (ee) (>99%), and a satisfied enantiomeric ratio (E) (>600) as well were obtained. This study showed that the bacterial isolate T. tyrosinosolvens E105 displayed a high enantioselectivity towards the hydrolysis of racemic ethyl 2-(2-oxopyrrolidin-1-yl) butyrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.