Abstract

Existing global microcode compaction approaches have all assumed a target architecture that has microoperation conflicts and data dependencies as the two fundamental compaction constraints. However, new practical micromachine features demand that the timing constraint be introduced into the traditional compaction model to guarantee compaction correctness. This paper starts by an analysis on the nature of timing constraints, then modifies the rules for microoperation motions, presents an algorithm, TST, based on Trace Scheduling, for global compaction under timing constraints, and finally shows results of experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.