Abstract
MotivationComputational promoter prediction (CPP) tools designed to classify prokaryotic promoter regions usually assume that a transcription start site (TSS) is located at a predefined position within each promoter region. Such CPP tools are sensitive to any positional shifting of the TSS in a windowed region, and they are unsuitable for determining the boundaries of prokaryotic promoters. ResultsTSSUNet-MB is a deep learning model developed to identify the TSSs of σ70 promoters. Mononucleotide and bendability were used to encode input sequences. TSSUNet-MB outperforms other CPP tools when assessed using the sequences obtained from the neighborhood of real promoters. TSSUNet-MB achieved a sensitivity of 0.839 and specificity of 0.768 on sliding sequences, while other CPP tool cannot maintain both sensitivities and specificities in a compatible range. Furthermore, TSSUNet-MB can precisely predict the TSS position of σ70 promoter-containing regions with a 10-base accuracy of 77.6%. By leveraging the sliding window scanning approach, we further computed the confidence score of each predicted TSS, which allows for more accurately identifying TSS locations. Our results suggest that TSSUNet-MB is a robust tool for finding σ70 promoters and identifying TSSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.