Abstract

The function and specific structural aspects of the tryptophan-rich sensory protein (TspO) of Rhodobacter sphaeroides 2.4.1 were studied using site-directed mutagenesis involving some 17 different amino acids. The choice of these amino acids changes was dictated from an analysis of the TspO family of proteins derived from the data bases. These studies demonstrated the importance of several highly conserved tryptophan residues in the sensory transduction pathway involving TspO through the proposed binding of an intermediate(s) in the tetrapyrrole biosynthesis pathway. These studies also revealed that the substitution of one or several of the amino acid residues dramatically affected, either directly or indirectly, the levels of TspO in the membranes of R. sphaeroides. Mounting evidence is presented suggesting that TspO normally forms a dimer within the bacterial outer membrane, and the dimer form of TspO may be the active form for TspO function. Because our earlier studies provided us with a functional framework within which to view these amino acid substitutions, we are able to suggest a preliminary model for TspO structure-function. Not only do these studies tell us more about TspO, but they also shed light on the TspO homologue, the drug-binding component of the mitochondrial peripheral benzodiazepine receptor. Mounting evidence draws numerous parallelism between these proteins and supports the significance of using TspO as a model for the structure and function of the mitochondrial protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.