Abstract

BackgroundLiver injury is the main factor in multiple organ failure caused by sepsis. Thymic stromal lymphopoietin (TSLP) is derived from epithelial cells and plays an important role in inflammation, allergies and cancer. The role of TSLP in sepsis-induced liver injury (SILI) is unclear. The purpose of this study was to investigate the effect of TSLP on sepsis-induced liver injury and to clarify the mechanism. MethodsWild-type (WT) mice and TSLPR knockout (TSLPR-/-) mice were subjected to cecal ligation and puncture (CLP) to generate a SILI model. Liver injury was assessed by measuring the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), histologic liver injury scores, hepatocyte death, and liver inflammatory factors. Signal pathways were explored in vivo to identify possible mechanisms for TSLP in SILI. ResultsThe expression of TSLP and TSLPR increased during SILI. Deletion of TSLPR exacerbated liver injury in terms of serum ALT, AST, histologic liver injury scores, and liver inflammatory factors. Compared with controls, administration of exogenous recombinant mouse TSLP reduced liver injury in WT mice during SILI, but failed to reduce liver injury in TSLPR–/– mice. TSLP induced autophagy in hepatocytes during SILI. Mechanistically, Akt and STAT3 were activated in WT mice during SILI. The opposite results were observed in TSLPR–/– mice. In addition, the protective effects of TSLP in WT mice were blocked by PI3K inhibitor, LY294002, during SILI. ConclusionThese results suggest that TSLP can improve liver injury caused by sepsis and its specific mechanism may be related to inducing autophagy through the PI3K/Akt/STAT3 signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.