Abstract

Conventional nanofiber forming peptide amphiphiles comprise a beta sheet forming, short peptide sequence with an alkyl chain attached at one terminus. We report the selfassembly of a peptide amphiphile possessing a mid-chain located alkyl substituent (a T-shaped peptide amphiphile) into nanofiber networks. Peptide synthesis was carried out using standard 9-fluorenylmethoxycarbonyl solid phase peptide synthesis protocols, followed by covalent attachment of the alkyl chains to yield target peptide amphiphiles. Self-assembly was then studied using electron microscopy and coarse-grained molecular dynamics simulations. T-shaped peptide amphiphiles self-assembled into nanofibers just like linear peptide amphiphiles, but then unlike linear peptide amphiphiles, T-shaped peptide amphiphiles formed inter-fiber associations and ultimately nanofiber networks. Changing the position of the alkyl chain in a peptide amphiphile from the terminal end of the peptide to the middle part of the peptide, to form a T-shaped peptide amphiphile, does not disrupt the molecular interactions required for the self-assembly of the peptide amphiphiles into nanofibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.