Abstract

Incorporation of E-cadherin into the adherens junction is a highly regulated process required to establish firm cell-cell adhesion in most epithelia. Less is known about the mechanisms that govern the clearance of E-cadherin from the cell surface in both normal and pathological states. In this study, we found that the steady-state removal of E-cadherin in primary cultured pig thyroid cell monolayers is slow and involves intracellular degradation. Experimental abrogation of adhesion by a Ca2+ switch induces rapid cell surface proteolysis of E-cadherin. At the same time, endocytosed intact E-cadherin and newly synthesized E-cadherin accumulate in intracellular compartments that largely escape further degradation. Acute stimulation with thyroid-stimulating hormone (TSH) or forskolin prevents all signs of accelerated E-cadherin turnover. The findings indicate that TSH receptor signaling via cyclic AMP stabilizes the assembly and retention of E-cadherin at the cell surface. This suggests a new mechanism by which TSH supports maintenance of thyroid follicular integrity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.