Abstract
The pro-inflammatory cytokines IL-1 and TNF-α are primary mediators of the acute phase response, the complex reaction of the mammalian organism to infection and injury. Among the genes activated by TNF-α and IL-1 in a variety of cells is TNF-stimulated gene 6 (TSG-6t). The TSG-6† cDNA encodes a secreted 35 kDa glycoprotein which is abundant in synovial fluids of patients with various forms of arthritis and detectable in serum of patients with different inflammatory or autoimmune disorders. TSG-6 protein consists of two structural domains: a hyaluronan-binding link module, the characteristic domain of the hyaladherin family of proteins, and a C-terminal CUB domain, present in a variety of diverse proteins. TSG-6 forms a stable complex with components of the plasma protein inter-α-inhibitor (IαI), a Kunitz-type serine protease inhibitor. TSG-6 and IαI synergize to inhibit plasmin, a serine protease involved in the activation of matrix metalloproteinases which are part of the proteolytic cascade associated with inflammation. Recombinant human TSG-6 protein exerts a potent anti-inflammatory effect in a murine model of acute inflammation. Modulation of the proteolytic network associated with inflammatory processes may be a mechanism whereby TSG-6, in cooperation with IαI, inhibits inflammation. Activation of the TSG-6 gene by pro-inflammatory cytokines, presence of TSG-6 protein in inflammatory lesions and its anti-inflammatory effect suggest a role for TSG-6 in a negative feed-back control of the inflammatory response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.