Abstract

Bacterial effector proteins are secreted by a variety of protein secretion systems and play an important role in the interaction between the host and pathogenic bacteria. Therefore, it is important to find a fast and inexpensive method to discover bacterial effectors. In this study, we propose a multi-type secretion effector adaptive random forest (TSE-ARF) to adaptively identify secretion effectors across T1SE-T4SE and T6SE based only on protein sequences. First, we proposed two new feature descriptors by considering some characteristic protein information and fused them with some universal features to form a 290-dimensional feature vector with good versatility. Then, the TSE-ARF model was used to make classification predictions by parameter adaptation of different secretion effectors integrating Shuffled Frog Leaping Algorithm and random forest. The perfect performance in TSE-ARF under different data sets and settings shows its considerable generalization ability, with which more candidate effectors were screened in the whole genome. Source code is available at https://github.com/AIMOVE/TSE-ARF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.