Abstract

The collaborative charging issue in Wireless Rechargeable Sensor Networks (WRSNs) is a popular research problem. With the help of wireless power transfer technology, electrical energy can be transferred from wireless charging vehicles (WCVs) to sensors, providing a new paradigm to prolong network lifetime. Existing techniques on collaborative charging usually take the periodical and deterministic approach, but neglect influences of non-deterministic factors such as topological changes and node failures, making them unsuitable for large-scale WRSNs. In this paper, we develop a t emporal- s patial c harging scheduling a lgorithm, namely TSCA, for the on-demand charging architecture. We aim to minimize the number of dead nodes while maximizing energy efficiency to prolong network lifetime. First, after gathering charging requests, a WCV will compute a feasible movement solution. A basic path planning algorithm is then introduced to adjust the charging order for better efficiency. Furthermore, optimizations are made in a global level. Then, a node deletion algorithm is developed to remove low efficient charging nodes. Lastly, a node insertion algorithm is executed to avoid the death of abandoned nodes. Extensive simulations show that, compared with state-of-the-art charging scheduling algorithms, our scheme can achieve promising performance in charging throughput, charging efficiency, and other performance metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.